Posttranslational Amelogenin Processing and Changes in Matrix Assembly during Enamel Development

نویسندگان

  • Mirali Pandya
  • Tiffani Lin
  • Leo Li
  • Michael J. Allen
  • Tianquan Jin
  • Xianghong Luan
  • Thomas G. H. Diekwisch
چکیده

The extracellular tooth enamel matrix is a unique, protein-rich environment that provides the structural basis for the growth of long and parallel oriented enamel crystals. Here we have conducted a series of in vivo and in vitro studies to characterize the changes in matrix shape and organization that take place during the transition from ameloblast intravesicular matrices to extracellular subunit compartments and pericrystalline sheath proteins, and correlated these changes with stages of amelogenin matrix protein posttranslational processing. Our transmission electron microscopic studies revealed a 2.5-fold difference in matrix subunit compartment dimensions between secretory vesicle and extracellular enamel protein matrix as well as conformational changes in matrix structure between vesicles, stippled materials, and pericrystalline matrix. Enamel crystal growth in organ culture demonstrated granular mineral deposits associated with the enamel matrix framework, dot-like mineral deposits along elongating initial enamel crystallites, and dramatic changes in enamel matrix configuration following the onset of enamel crystal formation. Atomic force micrographs provided evidence for the presence of both linear and hexagonal/ring-shaped full-length recombinant amelogenin protein assemblies on mica surfaces, while nickel-staining of the N-terminal amelogenin N92 His-tag revealed 20 nm diameter oval and globular amelogenin assemblies in N92 amelogenin matrices. Western blot analysis comparing loosely bound and mineral-associated protein fractions of developing porcine enamel organs, superficial and deep enamel layers demonstrated (i) a single, full-length amelogenin band in the enamel organ followed by 3 kDa cleavage upon entry into the enamel layer, (ii) a close association of 8-16 kDa C-terminal amelogenin cleavage products with the growing enamel apatite crystal surface, and (iii) a remaining pool of N-terminal amelogenin fragments loosely retained between the crystalline phases of the deep enamel layer. Together, our data establish a temporo-spatial correlation between amelogenin protein processing and the changes in enamel matrix configuration that take place during the transition from intracellular vesicle compartments to extracellular matrix assemblies and the formation of protein coats along elongating apatite crystal surfaces. In conclusion, our study suggests that enzymatic cleavage of the amelogenin enamel matrix protein plays a key role in the patterning of the organic matrix framework as it affects enamel apatite crystal growth and habit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of TRAP in the enamel matrix does not alter the enamel structural hierarchy.

The secreted, full-length amelogenin is the dominant protein of the forming enamel organ. As enamel mineralization progresses, amelogenin is quickly subjected to proteolytic activity, and eliminated from the enamel environment. Mature enamel contains only traces of structural proteins, including enamelin and the sheath protein ameloblastin. In addition, a proteolytic fragment of amelogenin, kno...

متن کامل

Protein-to-protein interactions: criteria defining the assembly of the enamel organic matrix.

Enamel crystallites form in a protein matrix located proximal to the ameloblast cell layer. This unique organic extracellular matrix is constructed from structural protein components biosynthesized and secreted by ameloblasts. To date, three distinct classes of enamel matrix proteins have been cloned. These are the amelogenins, tuftelin, and ameloblastin, with recent data implicating ameloblast...

متن کامل

Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale.

Enamel is a highly organized hierarchical nanocomposite, which consists of parallel arrays of elongated apatitic crystallites forming an intricate three-dimensional microstructure. Amelogenin, the major extracellular matrix protein of dental enamel, regulates the formation of these crystalline arrays via cooperative interactions with forming mineral phase. Using cryoelectron microscopy, we demo...

متن کامل

An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface.

Biomimetic reconstruction of tooth enamel is a significant topic of study in materials science and dentistry as a novel approach to the prevention, restoration, and treatment of defective enamel. We have developed a new amelogenin-containing chitosan hydrogel for enamel reconstruction that works through amelogenin supramolecular assembly, stabilizing Ca-P clusters and guiding their arrangement ...

متن کامل

Analysis of co-assembly and co-localization of ameloblastin and amelogenin

Epithelially-derived ameloblasts secrete extracellular matrix proteins including amelogenin, enamelin, and ameloblastin. Complex intermolecular interactions among these proteins are believed to be important in controlling enamel formation. Here we provide in vitro and in vivo evidence of co-assembly and co-localization of ameloblastin with amelogenin using both biophysical and immunohistochemic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017